Enhanced File System Testing Through Input and Output Coverage

18th ACM International Systems and Storage Conference (SYSTOR '25)

Yifei Liu¹, Geoff Kuenning², Md. Kamal Parvez¹, Scott A. Smolka¹, and Erez Zadok¹

¹ Stony Brook University; ² Harvey Mudd College

File System Testing

- Bugs emerge even in well-tested file systems^[1]
- Coverage matters: bugs hide in corner cases
- Coverage metrics guide testing
 - Code coverage is most common
 - Evaluate tests, then improve them
 - Effective metrics: higher coverage leads to more bugs found

[1] Kim, Seulbae, et al. "Finding Semantic Bugs in File Systems with an Extensible Fuzzing Framework", SOSP, 2019.

Code Coverage

- Measures how much source code is exercised
 - Levels: lines, functions, branches, etc.
 - Assess test completeness; finds untested code
- Limitations of code coverage in file system testing
 - Weak link: test inputs ← file system code
 - Large effort to instrument kernel code
- Unclear correlation: coverage vs. test effectiveness

Real-World Bug Study

- Analyzed 70 recently reported Ext4 and Btrfs bugs
 - Ran xfstests to check bug detection and code coverage
 - Does code coverage imply bug detection?
- xfstests missed bugs despite line, function, and branch coverage
- 71% of bugs depend on specific syscall inputs (input bugs)
- 59% occur on exit paths affecting syscall returns (output bugs)
- Takeaways
 - Code coverage is not strongly correlated with the test effectiveness of file system testing
 - 2. Covering both **syscall inputs and outputs** is essential for file system testing

Input and Output Partitioning

- Syscall input and output space is massive
 - ◆ Linux: ~400 syscalls, dozens of them for file systems
 - Input/Output space: various arguments, arbitrary values, error codes
- Input space partitioning
 - Bitmasks: Partitioned by bit flags (e.g., open flags)
 - Numeric: Partitioned by powers of 2 numbers (e.g., write size)
 - Categorical: Partitioned by individual categories (e.g., lseek whence)
- Output space partitioning
 - Success or failure; Error codes; Powers of 2 for bytes
- Input/output coverage: coverage of input/output partitions

IOCov Framework

- IOCov: computing input and output coverage for file system testing tools
 - Syscall filter
 - Filter out irrelevant syscalls not used for testing
 - Syscall variant handler
 - Merge coverage of syscall variants
 - Input/Output partitioner
 - Partition syscall Input/Output space to obtain coverage

Application and CrashMonkey Architecture

- IOCov application: evaluate and improve coverage for better testing
- CrashMonkey^[2]: simulates crashes to test file system crash consistency
- CM-IOCov: improves CrashMonkey's input coverage to detect more crash consistency bugs

[2] Mohan, Jayashree, et al. "Finding Crash-Consistency Bugs with Bounded Black-Box Crash Testing", OSDI, 2018.

CM-IOCov Architecture

CM-IOCov Input Driver:

generates workloads covering more input partitions than original CrashMonkey

Examples of newly-supported inputs

- More open flags
- More open/mkdir mode
- More write/offset/fallocate bytes
- ..

CM-IOCov Architecture

CM-IOCov Input Driver: generates workloads covering more input partitions than original CrashMonkey

- Seamlessly replace the original CrashMonkey input driver
- Reuse CrashMonkey's crash simulation and checker modules

IOCov Evaluation Setup

- IOCov supports input/output coverage for 27 file system calls, including 11 base syscalls
- Four representative testing tools for the Ext4 file system
 - CrashMonkey: automatic test generation
 - xfstests: regression test suite
 - Syzkaller: fuzzing
 - Metis: model checking
- Measured input/output coverage over equal time

Base Syscall	Variants	Arguments (inputs) Captured
open	openat creat openat2	flags mode

Input Coverage: open() flags

Input Coverage: write() sizes

Bug Detection: CM-IOCov vs. CrashMonkey

- Ran same workloads on CM-IOCov and CrashMonkey
 - ◆ Exclusive test failures: detected by only one tool (CM-IOCov or CrashMonkey)
 - One bug → multiple failing tests
- Kernel 5.6, total 426K workloads
 - Exclusive test failures CM-IOCov: 400 vs. CrashMonkey: 31
- Kernel 6.12, total 379K workloads
 - Exclusive test failures CM-IOCov: 322 vs. CrashMonkey: 115
- CM-IOCov: significantly more exclusive failures than CrashMonkey

No.	Bug Consequence	System Call Sequence
1	Allocated blocks lost after fsync	open, write, falloc
2	File content did not match after fsync	open, write, mmapwrite
3	Data block missing after rename	open, write, falloc, rename
4	Rename not persisted by fsync	opendir, close, rename, mkdir
5	Incorrect number of file hard links after fsync	mkdir, open, link, rename

Conclusions

- Code coverage is not strongly correlated with test effectiveness in file system testing
- File system testing requires input and output coverage alongside code coverage
- IOCov: measures input/output coverage to identify under- and over-testing and offers insights to improve testing
- CM-IOCov: improves input coverage to find more crash consistency bugs in file systems

Enhanced File System Testing through Input and Output Coverage

Thank You

yifeliu@cs.stonybrook.edu

CM-IOCov

